A Radial Reduction Theorem for Quasilinear PDEs
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Radial Patterns in Fluid Problems . Spots in the Swift-Hohenberg Equation (SHE)
Localised axisymmetric and dihedral patterns form in various fluid problems Swift-Hohenberg equation: 0= —(1+ A)%u — eu + vu® — u°
surrounded by 2 invariant unde.r contmuousf and discrete Assume axisymmetry to obtain semilinear ordinary differential equation
flat state rotations, respectively
Linear Spectrum: Au = M,
A ferrofluid subject to magnetic effects can exhibit spots and hexagons d et ’ (o)
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magnetic fluid axisymmetric dihedral i ®
R(N)
2008: Numerical study of localised hexagons!* ®

2009: Proof of localised spots using radial

spatial dynamics!®
Localised ferrofluid spot!! Localised ferrofluid hexagon!?! b y

Ferrofluid Spots: PDE Formulation!!
Localised spots and dihedral

patterns in the SHE!®

Localised Dihedral Patterns in the SHE

Axisymmetric free surface problem, modelled by a
quasilinear partial differential equation

; Aims
—u = L(r)u + N(u, 0,u;e,r)

dr — g Consider dihedral groups D,,, for arbitrary m € N

Linear operator with  Quasilinearity: N has Develop a radial reduction theorem invariant under

d,, terms non-smoothing effects for quasilinear PDEs of the form (1) rotations of 2m/m

Proof of localised dihedral patterns in Galerkin mode]!®
Linear spectrum: Au = L(oo)u

Prove the existence of localised spots

/ b () 'hyperbo]ic space’ In fluid problems
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® Existence of localised dihedral patterns

‘centre space’

Project onto eigenbasis of L(o0), with u, Plan and Challenges Localised D, Pattern  Localised D, Pattern

and u,, centre and hyperbolic variables

d o :
—Uc = Me(r)uc + Fe(ue, un; €,7) Extend quasilinear centre-manifold reduction”) from 1D to radial PDEs
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infinite dimensional ODE Need to prove Maximal Regularity results for (1):

The operator M, (r) provides additional smoothing to

balance the quasilinear nonlinearity F,(u., uy; & T )

Additional restrictions on function spaces for solutions, including conditions at r=0

Planar vs. Radial Smoothness References

Radially smooth function u(|x|) = e™ VS. Planar smooth function v(|x|) = sech(|x|)

A v(x) = sech(|a)

[s v'(|x|) a planar smooth function?
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SEEZERE

Requires a novel framework of radial function spaces with non-autonomous differential operators



