A Radial Reduction Theorem for Quasilinear PDEs

Dan J. Hill

Universität des Saarlandes

Radial Patterns in Fluid Problems

Localised axisymmetric and dihedral patterns form in various fluid problems

surrounded by a flat state

invariant under continuous and discrete rotations, respectively

A ferrofluid subject to magnetic effects can exhibit spots and hexagons axisymmetric dihedral

Localised ferrofluid hexagon^[2]

Spots in the Swift-Hohenberg Equation (SHE)

Swift-Hohenberg equation: $0 = -(1+\Delta)^2 u - \varepsilon u + \nu u^2 - u^3$

Assume axisymmetry to obtain semilinear ordinary differential equation

2008: Numerical study of localised hexagons^[4]

 $\Re(\lambda)$

Linear Spectrum: $\lambda u = \mathrm{M_c}(\infty)u$

2009: Proof of localised spots using radial spatial dynamics^[5]

Localised spots and dihedral patterns in the $SHE^{[6]}$

Ferrofluid Spots: PDE Formulation [3]

Axisymmetric free surface problem, modelled by a quasilinear partial differential equation

$$rac{\mathrm{d}}{\mathrm{d}r}u = \mathrm{L}(r)u + \underbrace{N(u,\partial_z u;arepsilon,r)}$$

Linear operator with Quasilinearity: N has ∂_{zz} terms non-smoothing effects

Linear spectrum: $\lambda u = L(\infty)u$

Project onto eigenbasis of $L(\infty)$, with u_c and u_h centre and hyperbolic variables

Develop a radial reduction theorem for quasilinear PDEs of the form (1)

Aims

Prove the existence of localised spots in fluid problems

Existence of localised dihedral patterns

Localised Dihedral Patterns in the SHE

Consider dihedral groups D_m , for arbitrary $m \in \mathbb{N}$

invariant under

rotations of $2\pi/m$

Proof of localised dihedral patterns in Galerkin model^[6]

Localised D₄ Pattern

Localised D₁₄ Pattern

Plan and Challenges

Extend quasilinear centre-manifold reduction^[7] from 1D to radial PDEs

Need to prove Maximal Regularity results for (1):

The operator $M_h(r)$ provides additional smoothing to balance the quasilinear nonlinearity $F_h(u_c, u_h; \varepsilon, r)$

Additional restrictions on function spaces for solutions, including conditions at r=0

Planar vs. Radial Smoothness

 $u(x) = e^{-|x|}$

Radially smooth function $u(|x|) = e^{-|x|}$

VS.

Planar smooth function v(|x|) = sech(|x|)

 $v(x) = \operatorname{sech}(|x|)$

Is v'(|x|) a planar smooth function?

Requires a novel framework of radial function spaces with non-autonomous differential operators

References

[1] R. Richter, Europhysics News, 42.3 (2011)

[2] D. Lloyd et al., *J. Fluid Mech.*, 783 (2015)

[3] D. Hill et al., *J. Nonlinear Sci.*, 31 (2021)

[4] D. Lloyd et al., *SIADS*, 7 (2008)

[5] D. Lloyd et al., *Nonlinearity*, 22 (2009)

[6] D. Hill et al., *Nonlinearity*, 36 (2023)

[7] A. Mielke, *Math. Meth. Appl. Sci.*, 10 (1988)