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Significant progress has been made in 
analysing the Rosensweig instability for the 
case of doubly periodic structures, see [11]. 

One defining characteristic of the Rosensweig 
instability is the critical value of the applied 
field strength, where the spiked structures 
manifest throughout the domain.

Ferrofluids are a colloidal suspension of iron 
nano-particles in a carrier fluid, resulting in 
a superparamagnetic fluid.

When subject to a strong magnetic field, the 
surface of the ferrofluid becomes unstable 
and spikes emerge, known as the ̀ Rosensweig 
instability'. 

Localised patterns are employed in many 
areas of modelling; from vegetation in 
arid climates  [8] , to predicting and 
supressing crime 'hotspots' [10] . 

Gaining a better understanding of 
two-dimensional, and more specifically 
radial, localised patterns is one of the 
open problems presented in [4] .

Localised radial spots have been seen 
experimentally [7] , via a local 
perturbation of the magnetic field. 
However, these patterns persist even 
after this perturbation is removed, 
suggesting there may be an 
underlying mechanism for spots to  
spontaneously appear.

We assume the ferrofluid has a linear 
magnetisation law and is steady. We take 
cylindrical polar coordinates whose axes are 
centered at the spot, with finite depth and 
infinite radius. We also assume that the 
applied magnetic field is a constant uniform 
field in the z-direction.

Core solutions are spanned by:
- (Spots)
- (Rings)

We write down a variation of constants 
formula:

and parameterise the core manifold.

For the far-field problem, we define
and extend the system.

Working in slow coordinates                       ,
far-field solutions are constrained by some 
envelope function         :

We construct local solutions as               and               ,  
respectively. To do this, we employ radial centre-manifold 
reduction thoeory of Scheel [9]. We isolate the core manifold, 
containing all solutions which are bounded as              , and 
the far-field manifold, containing all solutions which decay 
exponentially as               .

To parameterise the far-field stable manifold we first construct 
the centre-stable manifold, containing all solutions bounded 
as               . We then introduce smooth foliations, as seen in [6], 
so that we can define the stable manifold as a set of mappings 
from the centre-stable manifold to the centre manifold (as 
pictured below)

In order to reconcile the algebraic behaviour of the core solutions 
with the exponential decay in the far-field, we employ Geometric 
Blow-Up methods, as seen in [6].

When matching on the 
centre-manifold, the amplitude 
equations of the system are 
equivalent to the Swift-Hohenberg 
equation, up to leading order.

Existence of radial spots have been 
proven for the Swift-Hohenberg 
equation in [5] and [6].

Future Work

Magnetic Potentials: 

Maxwell's equations:

Continuity equations at                    :

Steady Euler + Ferrohydrostatic  equations at                    :

After proving the existence of radial spots, 
we want to use linear stability techniques 
to capture the dynamics near the 
bifurcation point. 

Another area of interest is the interaction 
between 2 localised spots, which have 
been observed experimentally.

Q: Is there a link between radial spot 
formation and the Rosensweig instability?

We aim to prove the existence of localised radial spots 
for the ferrofluid problem, and then determine the 
class of patterns from which radial spots bifurcate.
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We use a flattening transformation to remove 
evolving domains,

We introduce a bifurcation parameter      , and 
construct a dynamical system,

We look for separable solutions at the 
bifurcation point, solving the eigenvalue 
problem for           (              ), with eigenvalues        
(repeated), and                             .

As       increases, we have a Hamiltonian-Hopf 
bifurcation.
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